SEMI-ACTIVELY CONTROLLED SUSPENSION OF RAILWAY VEHICLE

Filip Jeniš, Ing.

Institute of Machine and Industrial Design Faculty of Mechanical Engineering Brno University of Technology

Brno, 27. 3. 2024

CONTENT

- Motivation
- State of the art
- Aim of the thesis
- Scientific questions and hypothesis
- Materials and methods
- Results
- Conclucion

wikipedia.org

- Developing high-speed tracks in Europe
 - passenger and freight transport
 - ecological, economical
 - best for longer intercontinental paths

globalrailwayreview.com

dopravadnes.cz

Increasing requirements

- higher speeds
 - safety, stability
- passenger comfort
 - carbody vibration, tilting
- infrastructure requirements
 - wear, fees for track unfriendly vehicles

→ Higher requirements on damping system

Unstable ride

youtube.com/DFJP

Rail wear rail-fastener.com

Increasing requirements

- higher speeds
 - safety, stability
- passenger comfort
 - carbody vibration, tilting
- infrastructure requirements
 - wear, fees for track unfriendly vehicles

Higher requirements on damping system

→ <u>semi-active dampers</u>

Increasing requirements

- higher speeds
 - safety, stability
- passenger comfort
 - carbody vibration, tilting
- infrastructure requirements
 - wear, fees for track unfriendly vehicles

Higher requirements on damping system

→ <u>semi-active dampers</u>

STATE OF THE ART **APPROACHES TO IMPROVE PASSENGER COMFORT**

2005

- simulations
- improve 39 %
- Hudha et al.

2011

- simulations
- Shyhook
- improve 39 %

2012

- simple real model
- Mix-Skyhook-ADD
- improve 34 %

Shin et al.

2014

simple real model

Time(sec)

Boller rig t

- Skyhook
- improve 67 %

Sumary:

- lateral dampers
- Skyhook
- improve 30 40 %
- neglected or unstated response time
- not verified in real vehicle

Lack of knowledge

influence of damper dynamic behaviour

TATE OF THE ART APPROACHES TO IMPROVE PASSENGER COMFORT

Damper force response time

Dynamic force range

8/46 INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN

APPROACHES TO IMPROVE PASSENGER COMFORT

Dynamic force range

Damper force response time

Lack of knowledge: impact and the acceptable value of force response time and dynamic range for different S/A algorithms and for railway vehicle are unknown

TATE OF THE ART APPROACHES TO IMPROVE MR VALVE BEHAVIOUR

INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN **APPROACHES TO IMPROVE MR VALVE BEHAVIOUR**

STATE OF THE ART

Material approach X Shape approach

11/46

APPROACHES TO IMPROVE MR VALVE BEHAVIOUR

2013

STATE OF THE ART

- Iaminated stacks
- concept only

Kubík et al.

2017

- external MR valve
- feritte (iron oxid)
- *τ* = 4 ms, dr = 8

- Choi et al.
- grooved

2019

- *τ* = 2 ms
- dr = 2.5

2019

- structured
- τ = 1.3 ms
- dr = 5

Sumary:

- short response causes small dynamic range?
- common dynamic range 10-20 (Spelta 2012, Shin 2014),
- common response time 15-100ms (Spelta 2012, Koo 2006)
- 300 ms for railway MR damper (Guo 2015)

Lack of knowledge: influence of different materials and shapes of magnetic circuit on damper dynamic behaviour

STATE OF THE ART **FAIL-SAFE MR DAMPER**

Power failure \rightarrow low damping \rightarrow dangerous situation (derailment)

13/46

FAIL-SAFE MR DAMPER

はほ言

Sumary:

- permanent magnet in piston core
- fail-safe force 1/3 of max force

Lack of knowledge

 completely unknown dynamic behaviour of MR damper with permanent magnet

Lack of knowledge:

- influence of different materials and shapes of magnetic circuit on damper dynamic behaviour
- dynamic behaviour of MR damper with permanent magnet
- influence of damper dynamic behaviour on S/A control efficiency

Investigate the possibilities of improving the MR damper dynamic behaviour and the effect of damper dynamic behaviour on the performance of the semi-actively controlled suspension of railway vehicle

Investigate the possibilities of improving the MR damper dynamic behaviour and the effect of damper dynamic behaviour on the performance of the semi-actively controlled suspension of railway vehicle

Scientific questions

Q1: How does the material and geometry of the MR damper magnetic circuit affect force response time and dynamic range? Is a shorter damper force response time always associated with a smaller force dynamic range?

H1: Short response time causes small force dynamic range when only material or only shape approach is used.

The highest electrical resistivity \rightarrow the shortest response time.

The highest magnetic saturation \rightarrow the highest dynamic range

Shape approach \rightarrow 5 times shorter response time

Investigate the possibilities of improving the MR damper dynamic behaviour and the effect of damper dynamic behaviour on the performance of the semi-actively controlled suspension of railwav vehicle

Scientific questions

Q2: Will the permanent magnet in the MR valve affect the response time of the MR damper? Will the response time of the force rise and force drop be different?

H2: Permanent magnet only shift B-I curve in the gap, but don't affect generation of the magnetic field in the magnetic circuit. Response time of the force rise will be slower than the response time of the force drop.

Investigate the possibilities of improving the MR damper dynamic behaviour and the effect of damper dynamic behaviour on the performance of the semi-actively controlled suspension of railway vehicle

Scientific questions

Q3: How does damper behaviour affect the S/A control of railway vehicle lateral secondary MR dampers? Is there a difference between the effect of the force rise response time and force drop response time? What are the acceptable values of damper force response time and dynamic range for this control?

H3: The algorithms switch once at zero piston velocity and once at non-zero, so that **the response time for force rise will have a different effect than the response time for force drop**. An acceptable force **dynamic range is assumed to be about 10**. An acceptable **force response time is assumed to be about 10 ms**, due low vibration frequency of railway vehicle carbody.

 Necessary to answer these 3 questions before designing an MR damping system for a railway vehicle

Q1: What is the effect of the material and the shape approach?

19/46

Material approach

Material	Electrical resistivity (10 ⁻⁶ Ω·m)	Magnetic saturation (T)
11SMn30 – cutting steel	0.17	1.9
N87 ferrite – iron oxide	10,000,000	0.5
Sintex SMC – soft magnetic composites	2800	1.45
AISI 420A – stainless steel	0.5	1.6
Pure iron – SLM	0.13	1.7
Vacoflux 50 – CoFe alloy	0.42	2.35

Shape approach

- for materials with low electrical resistivity
- grooved core and cylinder of damper piston
- grooves intersect the flow of eddy curents
- final variant was selected using FEM analysis

Measuring of magnetic flux density and MR damper dynamic behaviour

- magnetic flux in the gap
 - Hall probe, teslameter
- pistons → MR damper
 → hydralulic pulsator

21/46

Damper force response time and dynamic range

- Ferrite and SMC: the shortest force response time
 - the highest electric resistivity
 - bad mechanical properities
- Vacoflux: the highest dynamic range
 - the highest magnetic saturation
- 11SMn30 6 times shorter force response time by grooves

Conclusion

- H1: verified
- Best option: SMC, grooved 11SMn30

Damper force response time and dynamic range

- Ferrite and SMC: the shortest force response time
 - the highest electric resistivity
 - bad mechanical properities
- Vacoflux: the highest dynamic range
 - the highest magnetic saturation
- 11SMn30 6 times shorter force response time by grooves

Conclusion

- H1: verified
- Best option: SMC, grooved 11SMn30

check for updates

Citation: Strecker, Z.; Jeniš, F.;

Valve for Semi-Active Control.

Materials 2021, 14, 2500. https:// doi.org/10.3390/ma14102500

Kubík, M.; Macháček, O.; Choi, S.-B.

Novel Approaches to the Design of an Ultra-Fast Magnetorheological

Damper force respons and dynamic range

- Ferrite and SMC: the sh force response time
 - the highest electric
- Vacoflux: the higher dyn
 - the highest magnet
- 11SMn30 6 times sho force response time by

Conclusion

- H1: verified
- Best option: SMC, groov

Department of Mechanical Engineering, The State University of New York at Korea (SUNY Korea), Incheon 21985, Korea

(IF 3.4)

MDPI

Correspondence: Zbynek.Strecker@vutbr.cz (Z.S.); seungbok.choi@sunykorea.ac.kr (S.-B.C.); Tel.: +420-541-143-216 (Z.S.); +82-10-3109-7329 (S.-B.C.)

Abstract: This article presents a list of suitable techniques and materials leading to the design of an ultra-fast magnetorheological (MR) valve. Two approaches for achieving the short response time are proposed: (a) by means of material, and (b) by means of the shape. Within the shape approach, the revolutionary technique of 3D metal printing using a selective laser melting (SLM) method was tested. The suitability of the materials and techniques is addressed based on the length of the response time, which is determined by the FEM. The simulation results determine the response time of the magnetic flux density on the step signal of the current. Subsequently, the response time is verified by the measurement of the simple magnetorheological valve. The following materials were tested: martensitic stainless steel AISI 420A (X20Cr13), cutting steel 11SMn30, pure iron for SLM, Sintex SMC STX prototyping material, ferrite N87, and Vacoflux 50. A special technique involving grooves was used for preventing eddy currents on materials with a high electrical conductivity. The simulation and experimental results indicate that a response time shorter than 2.5 ms can be achieved using materials such as Sintex SMC prototyping, ferrite N87, and grooved variants of metal pistons.

Keywords: magnetorheological valve; response time; eddy currents; magnetic simulations; SMC material

24/46

Geometry of magnetic circuit

- core and cylinder from 11SMn30
- two neodymum magnets

 $B_{max} = B_{mag} + B_{coil}$

 $B_{min} = B_{mag} - B_{coil}$

 $B_{fail} = B_{mag}$

Q2: What is the effect of the permanent magnet in the fail-safe MR damper?

25/46

Damper dynamic behaviour

fail-safe force is 1/3 of on-state force

Damper dynamic behaviour

- fail-safe force is 1/3 of on-state force
- permanent magnet influence but does not degrade transient behaviour of MR damper
- damping force rise is faster than force drop

Conclusion

H2: falsified

OP Publishing

Smart Mater. Struct. 30 (2021) 017004 (12pp)

Technical Note

(IF 4.1)

https://doi.org/10.1088/1361-665X/abc26f

Smart Materials and Structures

Insight into the response time of fail-safe magnetorheological damper

F Jeniš®, M Kubík®, O Macháček, K Šebesta and Z Strecker®

Brno University of Technology, Brno, Czech Republic

E-mail: filip.jenis@vutbr.cz

Received 30 June 2020, revised 23 September 2020 Accepted for publication 19 October 2020 Published 9 December 2020

Abstract

The significant problem of magnetorheological (MR) dampers is their poor fail-safe ability. In the case of power supply failure, the damper remains in a low damping state which is dangerous for several technical applications. This can be solved by accommodating a permanent magnet to the magnetic circuit of the damper. Currently, the MR dampers are used in progressive semiactive (S/A) control of suspension systems. The dynamics (force response time) of the damper is an important parameter that affects the performance of S/A control. The main goal of this paper is to introduce the dynamic behavior of MR damper with a permanent magnet. The damper design with the permanent magnet in the magnetic circuit, transient magnetic simulation including magnetic hysteresis and eddy currents, and experiments are presented. The magnetic field response time and MR damper force response time are measured and also determined from magnetic simulation. The permanent magnet significantly influences the MR damper dynamics. The decrease of the damping force from a fail-safe state-medium damping to off-state-low damping is significantly faster (2 ms, -1 A) than the increase to on-state-high damping (12 ms, 1 A). The exact value is depending on the electric current magnitude and piston velocity. The damper achieved fail-safe damping force approximately 1/3 of the maximum damping force. The exact value of the fail-safe force is magnetization history-dependent. The maximum dynamic force range is 8.5 which is comparable with the common design of MR damper.

Keywords: magnetorheological valve, MR damper, response time, permanent magnet, fail-safe, transient response, damper dynamics

H2.2: 11SMn30 cutting steel causes excessive eddy current development and a longer response time. A combination of the eddy current effect and the permanent magnet effect probably causes the behaviour described.

The response time could behave as hypothesis H2, i.e., the **force drop could be faster than the force rise** if the 11SMn30 cutting steel was **grooved** or if the magnetic circuit was made of a material more resistant to eddy currents, such as **SMC**.

28/46

Vehicle model

- lateral movement of railway vehicle suspension
- 2 degrees of freedom
- 1 wheelset, 1/2 of bogie frame, 1/4 of vehicle carbody
- kinematic excitation y₀
- 1:5 scale

Parameter	Symbol	Original	1:5 scale
1/2 bogie frame weight	m1	5000 kg	1000 kg
1/4 carbody weight	m2	13,750 kg	2750 kg
wheelset-bogie frame bond stiffness	k1	10 kN/mm	2 kN/mm
bogie frame-carbody bond stiffness	k2	1 kN/mm	0.2 kN/mm
wheelset-bogie frame bond damping	c1	10 kNs/m	2 kNs/m

Hardware-in-the-loop simulation

- real damper on pulsator
- virtual model on dSpace

MR damper

- magnetic circuit from SMC
- max. force of 1900 N (0.2 m/s)
- dynamic range of 7.6 (0.1 m/s)
- force rise response time of $\tau = 1.8$ ms
- force drop response time of $\tau = 1.1$ ms
- tested response time
 - 1.8 ms 56 ms
- tested dynamic range
 - 2 7.8

T₃₆ = 1.1 ms

time (ms)

2

I (A)

2

1.5

0.5

10

Q3: What is the effect of the MR damper dynamic behaviour on the S/A control efficiency?

31/46

8

6

Semi-active control

four S/A strategies

Skyhook – linear

• Shyhook – two states $F(v) = \begin{cases} F_{max}(v), & \dot{y}_2(\dot{y}_2 - \dot{y}_1) \ge 0\\ F_{min}(v), & \dot{y}_2(\dot{y}_2 - \dot{y}_1) < 0 \end{cases}$

$$I = \begin{cases} sat\left(\frac{I_{max} \cdot \dot{y}_2}{(\dot{y}_2 - \dot{y}_1)}\right), & \dot{y}_2(\dot{y}_2 - \dot{y}_1) \ge 0\\ I_{min}, & \dot{y}_2(\dot{y}_2 - \dot{y}_1) < 0 \end{cases}$$

Acceleration Driven Damper – two states

$$F(v) = \begin{cases} F_{max}(v), & \ddot{\mathbf{y}}_{2}(\dot{y}_{2} - \dot{y}_{1}) \ge 0\\ F_{min}(v), & \ddot{\mathbf{y}}_{2}(\dot{y}_{2} - \dot{y}_{1}) < 0 \end{cases}$$

• Acceleration Driven Damper – linear
$$I = \begin{cases} sat\left(\frac{I_{max} \cdot \dot{y}_2}{(\dot{y}_2 - \dot{y}_1)}\right), & \ddot{y}_2(\dot{y}_2 - \dot{y}_1) \ge 0\\ I_{min}, & \ddot{y}_2(\dot{y}_2 - \dot{y}_1) < 0 \end{cases}$$

32/46 INSTITUTE OF MACHINE AND INDUSTRIAL DESIG

Results

- excitation: straight track, 160 km/h
- force drop response time more important than the force rise response time
- ideal response time about $\tau = 8 \text{ ms}$
- best force-drop response time for ADD
 τ = 45 ms

Results

- excitation: straight track, 160 km/h
- force drop response time more important than the force rise response time
- ideal response time about $\tau = 8 \text{ ms}$
- best force-drop response time for ADD
 τ = 45 ms
- improve 34 % by ADD-L

Mode	RMS (m/s²)	Improvement (%)
passive	0.416	0
SH-2	0.298	28.3
SH-L	0.282	32.2
ADD-2	0.282	32.2
ADD-L	0.276	33.6

Conclusion

H3: verified

Results

- excitation: straight track, 160
- force drop response time m than the force rise response
- ideal response time about τ
- best force-drop response time $\tau = 45 \text{ ms}$
- improve 34 % by ADD-L

Conclusion

H3: verified

z actua	tors	(IF 2.6)	MDPI	
Article Effect of the on the Rail	e Magnetorheological Damper Dyr Vehicle Comfort: Hardware-in-the	namic Behav -Loop Simu	viour lation	0 0
Filip Jeniš ^{1,} *D, Micl	nal Kubík ¹ 10, Tomáš Michálek ² 10, Zbyněk Strecker ¹ , Jiří Žáč	ček ¹ D and Ivan Maz	ůrek ¹	
	 Institute of Machine and Industrial Design, Faculty of Mechanica of Technology, Technicka 2, 616 69 Brno, Czech Republic Department of Transport Means and Diagnostics, Faculty of Trans Studentska 95, 532 10 Pardubice, Czech Republic * Correspondence: filip.jenis@vutbr.cz; Tel.: +420-541-143-216 	l Engineering, Brno Univer sport Engineering, Universi	sity ty of Pardubice,	· · · · · · · · · · · · · · · · · · ·
	Abstract: Many publications show that the ride comfort of	a railway vehicle can b	e significantly	
	improved using a semi-active damping control of the lateral sec	condary dampers. Howev	ver, the control	
	efficiency depends on the selection of the control algorithm	and the damper dynam	nic behaviour,	
	i.e., its force rise response time, force drop response time a	nd force dynamic range	e. This paper	4 5 6
	examines the influence of these parameters of a magnetorheo	ological (MR) damper on	the efficiency	/namic range (-)
	of S/A control for several control algorithms. One new algori	ithm has been designed.	Hardware-in-	
	the-loop simulation with a real magnetorheological damper l	has been used to get clos	se to reality. A	
	key finding of this paper is that the highest efficiency of algor	rithms is not achieved w	ith a minimal	
	damper response time. Furthermore, the force drop response t	time has been more impo	ortant than the	
	torce rise response time. The Acceleration Driven Damper Li	inear (ADD-L) algorithn	n achieves the	
	highest efficiency. A reduction in vibration of 34% was achiev	ved.		
	Keywords: hardware-in-the-loop; Acceleration Driven Dan	nper; response time; dy	namic range;	
check for	semi-active; magnetorheological; damper; railway vehicle; lat	teral vibration		

updates

-∎-passive

-@-ADD-2 -*-ADD-L

7

CONCLUSION

S/A control of railway vehicle suspension significantly improves passenger comfort

- MR damper with great response time and dynamic range
- improvement using the material and the shape approach
- permanent magnet in fail-safe damper does not degrade damper behaviour
- damper scaled 1:5 was used → larger railway MR damper
 longer response time!!

CONCLUSION

MR bogie yaw damper

grooved 11SMn30

CONCLUSION

MR bogie yaw damper

- grooved 11SMn30
- dynamic range of 25 8.5
- response time τ = 7.8 ms
 (Guo 2015, 300 ms)
- suitable for use on a railway vehicle!

APPLICATION

MR bogie yaw damper

- grooved 11SMn30
- dynamic range of 25 8.5
- response time τ = 7.8 ms
 (Guo 2015, 300 ms)
- suitable for use on a railway vehicle

Simulations and tests

- reduction of axle box force RMS on straight track by 40 % (stability)
- reduction of maximal guiding forces in S-curce by 9 % (wear)

39/46

APPLICATION

Journal of Vibration and Control

Page 2 of 22

Semi-active yaw dampers in locomotive running gear: new control algorithms and verification of their stabilising effect

Filip Jeniš¹, Tomáš Michálek², Michal Kubík¹, Aleš Hába², Zbyněk Strecker¹, Jiří Žáček¹ and Ivan Mazůrek¹

¹ Institute of Machine and Industrial Design Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czechia

² Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Studentská 95, 532 10Pardubice, Czechia

E-mail: Filip.Jenis@vutbr.cz

Abstract

It is generally accepted that semi-actively controlled dampers can significantly improve the behaviour of a road or rail vehicle. In the case of a railway vehicle, this offers the possibility of solving a contradiction in the damping requirements for different driving modes. This paper deals with applying magnetorheological dampers with semiactive control in the locomotive bogie to reduce hunting oscillation. The magnetorheological bogie yaw damper design, selected algorithms for its control, and application on a complex multi-body locomotive model that simulates fast running on a real straight track are shown. The important part of the paper is focused on the effect of the damping force level and the damper force response time. The results have shown that using the semi-active control of the yaw dampers makes it possible to reduce carbody lateral oscillation by 60 % and wear in the wheel-rail contact by 80 % and improve running stability for higher equivalent conicity and subcritical speed. The critical speed can be increased by more than 60 km/h. The efficiency of the proposed semi-active control is most effective under conditions of low equivalent conicity.

Keywords: semi-active, magnetorheological, damper, hunting oscilation, railway vehicle, bogie, running stability

Journal of Intelligent Material Systems and Structures

Page 2 of 20

The Influence of Semi-actively Controlled Magnetorheological Bogie Yaw Dampers on Guiding Behaviour of a Railway Vehicle in an S-Curve: Simulation and On-track test

Filip Jeniš, Brno University of Technology, Technická 2, Brno, Czechia Tomáš Michálek, University of Pardubice, Faculty of Transport Engineering, Studentská 95, Pardubice, Czechia Michal Kubík, Brno University of Technology, Technická 2, Brno, Czechia Zbyněk Strecker, Brno University of Technology, Technická 2, Brno, Czechia Jiří Šlapák, University of Pardubice, Faculty of Transport Engineering, Studentská 95, Pardubice, Czechia Mazůrek Ivan, Brno University of Technology, Technická 2, Brno, Czechia

Abstract

Many publications have shown that semi-actively controlled dampers could significantly improve the behaviour of a road or rail vehicle. In the case of a railway vehicle, these dampers can solve a contradiction in the damping requirements for the different driving modes. This paper explores the application of magnetorheological bogie yaw dampers in the locomotive bogie to reduce guiding forces and wear in wheel-rail contact when the vehicle runs through the S-curve. The paper describes the magnetorheological damper, damper model and the strategies for its semi-active control, followed by the results from simulations on a complex multi-body locomotive model and from the on-track test with a real vehicle. The simulations and on-track tests have shown that using the semi-active control of the yaw dampers leads to a reduction of the guiding force and so-called "combined loading force" by around 10 %. The reduction of these forces will lead to a decrease in wear in the wheel-rail contact.

Keywords

semi-active, magnetorheological, yaw, damper, railway vehicle, S-curve, guiding force, wear

passive

APPLICATION

MR lateral and vertical damping system

- Škoda 10Ev InterPanter
- best algorithm
 Shykook-linear
- comfort increased by 50 %
- first test runs May 2024

Papers published in journals with impact factor

- JENIŠ, Filip; KUBÍK, Michal; MICHÁLEK, Tomáš; STRECKER, Zbyněk; ŽÁČEK, Jiří; MAZŮREK, Ivan. Effect of the magnetorheological damper dynamic behaviour on the rail vehicle comfort: hardware-in-the-loop simulation. Actuators, 2023, 12(47), 1-14. (IF 2.6)
- STRECKER, Zbyněk; JENIŠ, Filip; KUBÍK, Michal; MACHÁČEK, Ondřej; CHOI, Seung Bok. Novel Approaches to the Design of an Ultra-Fast Magnetorheological Valve for Semi-Active Control. *Materials*, 2021, 14(10), 1-20. (IF 3.4)
- JENIŠ, Filip; KUBÍK, Michal; MACHÁČEK, Ondřej; ŠEBESTA, Karel; STRECKER, Zbyněk. Insight into the response time of fail-safe magnetorheological damper. Smart Materials and Structures, 2020, 30(1), 1-13. (IF 4.1)
- ŽÁČEK, Jiří; ŠEBESTA, Karel; MOHAMMAD, Housam; JENIŠ, Filip; STRECKER, Zbyněk; KUBÍK, Michal. Experimental Evaluation of Modified Groundhook Car Suspension with Fast Magnetorheological Damper. Actuators, 2022, 11(12), 1-14. (IF 2.6)
- KUBÍK, Michal; VÁLEK, Josef; ŽÁČEK, Jiří; JENIŠ, Filip; BORIN, Dmitry; STRECKER, Zbyněk; MAZŮREK, Ivan. Transient response of magnetorheological fluid on rapid change of magnetic field in shear mode. *Scientific Reports*, 2022, **12**(1), 1-10. (IF 4.6)
- KUBÍK, Michal; ŠEBESTA, Karel; STRECKER, Zbyněk; JENIŠ, Filip; GOLDASZ, Janusz; MAZŮREK, Ivan. Hydrodynamic response time of magnetorheological fluid in valve mode: model and experimental verification. *Smart Materials and Structures*, 2021, **30**(12), 1-13. (IF 4.1)
- ROUPEC, Jakub; JENIŠ, Filip; STRECKER, Zbyněk; KUBÍK, Michal; MACHÁČEK, Ondřej. Stribeck Curve of Magnetorheological Fluid within Pin-on-Disc Configuration: An Experimental Investigation. *Materials*, 2020, 13(20), 1-11. (IF 3.4)

actuators

42/4

Papers in conference proceedings (12x)

- MICHÁLEK, Tomáš; JENIŠ, Filip. Modelling of secondary suspension for electric multiple unit. In. Computational Mechanics 2023, 38th conference with international participation. Srní: University of West Bohemia. s. 116-118.
- JENIŠ, Filip; MICHÁLEK, Tomáš. The effect of semi-active control of bogie yaw dampers on the railway vehicle critical speed. In, 26th International Conference Current Problems in Rail Vehicles 2023. Žilina: Scientific and Technical Society at the University of Žilina. s. 213-220. (expected WOS)
- BASARGAN, Hakan; JENIŠ, Filip; MIHÁLY, András; GÁSPÁR, Péter. Fault-tolerant control of semi-active suspension in case of oil leakage of magnetorheological damper. In 2023 EUROPEAN CONTROL CONFERENCE, ECC. Bucharest, Romania: IEEE, 2023. (WOS)
- KUBÍK, Michal; STRECKER, Zbyněk; JENIŠ, Filip; MACHÁČEK, Ondřej; PŘIKRYL, Matěj; ŠPALEK, Petr. Magnetorheological Yaw Damper with Short Response Time for Railway Vehicle Bogie. In Actuators 2021. BERLIN: VDE VERLAG GMBH, 2021. s. 1-4. (Scopus)
- JENIŠ, Filip; MICHÁLEK, Tomáš; MAZŮREK, Ivan. Benefit of a semi-actively conntroled magnetorheological damper for a railway vehicle. In Current Problems in Rail Vehicles 2021, 25th conference with international participation. Pardubice: Faculty of transport engineering University of Pardubice, 2021. s. 85-92. (expected WOS)
- JENIS, Filip; STRECKER, Zbyněk; MAZUREK, Ivan. A new method for on-board car suspension testing. In Proceedings of the Engineering Mechanics 2020. Brno: Brno University of Technology Institute of Solid Mechanics, Mechatronics and Biomechanics, 2020. s. 238-241. (WOS)
- ZINDULKA, Martin; STRECKER, Zbyněk; JENIŠ, Filip. Semiactive seat suspension for agricultural machines. In Proceedings of the Engineering Mechanics 2020. Brno: Brno University of Technology Institute of Solid Mechanics, Mechatronics and Biomechanics, 2020. s. 548-551. (WOS)
- JENIŠ, Filip; MAZŮREK, Ivan. Sprung mass positioning by semi-actively controlled damper. In MATBUD'2020 Scientific-Technical Conference: E-mobility, Sustainable Materials and Technologies. MATEC Web of Conferences. EDP Sciences, 2020. s. 1-8.
- KUBÍK, Michal; JENIŠ, Filip; HAŠLÍK, Igor. The magnetic circuit dynamics of a magnetorheological valve with a permanent magnet. In MATBUD'2020 Scientific-Technical Conference: E-mobility, Sustainable Materials and Technologies. MATEC Web of Conferences. EDP Sciences, 2020. s. 1-8.
- KUBÍK, Michal; ROUPEC, Jakub; JENIŠ, Filip; MAZŮREK, Ivan. The settings of CFD model with magnetorheological fluid and its influence on the results. In Engineering Mechanics 2019, 25th International Conference. Praha: Institute of Thermomechanics of the Czech Academy of Sciences, 2019. s. 223-226. (WOS)
- JENIŠ, Filip; ROUPEC, Jakub; ŽÁČEK, Jiří; KUBÍK, Michal; MACHÁČEK, O.; SMILEK, J.; SMILKOVÁ, M.; MAZŮREK, Ivan. Abrasion of Magnetorheological Fluids. In Engineering Mechanics 2019, 25th International Conference. Praha: Institute of Thermomechanics of the Czech Academy of Sciences, 2019. s. 169-172. (WOS)
- JENIS, Filip; MAZUREK, Ivan. Mechatronicaly controlled bogie of high speed train. In Conference proceedings of the 60th International Conference of Machine Design Departments. Brno University of Technology, 2019.

Other results

- JENIŠ, Filip; DANIEL, Pavel; MAZŮREK, Ivan: SW Demo; Program for semi-active MR damper regulation. Software (RIV-R)
- STRECKER, Zbyněk; MAZŮREK, Ivan; MACHÁČEK, Ondřej; JENIŠ, Filip: Controller for the semi-active MR damper. Functional specimen (RIV-G)
- JENIŠ, Filip; ŠEBESTA, Karel; DANIEL, Pavel; MAZŮREK, Ivan: Demonstrator for verifying the functionality of a fast-response MR damper.
 Functional specimen (RIV-G)
- JENIŠ, Filip; MAZŮREK, Ivan: Simulation model of the dynamic structure of the vehicle suspension during the over-crossing test. Software (RIV-R)
- JENIŠ, Filip; MAZŮREK, Ivan; SKUHRAVÝ, Pavel: Control and analysis program of the over-crossing tester. Software (RIV-R)
- MAZŮREK, Ivan; JENIŠ, Filip; SKUHRAVÝ, Pavel: Inertial measurement unit for sensing carbody movement. Functional specimen (RIV-G)
- MAZŮREK, Ivan; JENIŠ, Filip; SKUHRAVÝ, Pavel: Universal over-crossing obstacle. Functional specimen (RIV-G)

Demonstrator of MR damper function *ustavkonstruovani.cz*

Inertial measurement unit ustavkonstruovani.cz

Program for S/A MR damper control ustavkonstruovani.cz 44/46

Project participations

- 2023 Present, Semiactive damping system for single deck electric multiple unit (Technology Agency of the Czech Republic CK04000210)
- 2023 Present, Božek Vehicle Engineering National Center of Competence (Technology Agency of the Czech Republic TN02000054)
- 2022 Present, Hydraulic semi-active damper for intelligent rail bogie (Technology Agency of the Czech Republic CK03000052)
- 2020 2022, Study of the magnetorheological fluid response time (Czech Science Foundation 20-23261Y)
- 2019 2022, National Competence Centre of Mechatronics and Smart Technologies for Mechanical Engineering (Technology Agency of the Czech Republic – TN01000071)
- 2018 2021, Development of Magnetorheological Damping System for Railway Vehicles (Czech Ministry of Industry and Trade FV30310)
- 2020, Development of a fail-safe magnetorheological damper (university grant FEKT/FSI-J-20-6260)
- 2017 2019, Studies on Magnetorheological Fluid with High Sedimentation Stability (Czech Science Foundation GC17-10660J)
- 2017 2019, Electronic car suspension tester (Technology Agency of the Czech Republic TH02010663)

THANK YOU FOR YOUR ATTENTION

Filip Jeniš

Filip.Jenis@vutbr.cz

www.ustavkonstruovani.cz