Optical measurement with structured light scanner based on automated search for the best measurement positions from CAD data of the measured part

Tomáš Koutecký

Small minds are concerned with the extraordinary, great minds with the ordinary.

Blaise Pascal
CONTENTS

• Introduction
• Motivation
• Literature review
• Critical analysis
• Goals of research and methodology
• Current stage of project
• Bibliography

This presentation was created as a part of the project: "Complex System for Attracting, Education and Continuing Involvement of Talented Individuals to Research Centers of AS CR and FME BUT", reg. no. CZ.1.07/2.3.00/09.0228
INTRODUCTION - THEME

Supervisor specialist: Ing. David Paloušek, Ph.D.

Automation of 3D optical photogrammetry measurement.
INTRODUCTION

• Inspection – verification of prescribed specifications

• Traditional methods – contact instruments \leftrightarrow automation not possible

• Recent methods – CMM, Laser scanner, Structured light scanner

• Automation of particular phases of inspection – measurement, registration, evaluation

• Drawing-less documentation – CAD-based inspection

www.foundryfabrication.co.uk
MOTIVATION

• CMM measurement is slow with few acquired points
• Increasing adoption of optical systems in industrial applications
• Time savings employing automation
LITERATURE REVIEW

• Automation in CMM inspection
• Automation in Laser scanner inspection
• Automation in Structured light scanner inspection
LITERATURE REVIEW - CMM

• Registration of CAD and CMM coordinate system
• Offset NURBS surfaces
• More accurate registration than with conventional method
• Surface sampling – measurement points
• Uniform, curvature based, minimum sample density, parameterisation-based

Conclusion: Better description of free-form surfaces in inspection
LITERATURE REVIEW - CMM

- Sampling of the surface for the measuring points
- 4 sampling algorithms + genetic algorithm
- Equi-parametric, patch size based, curvature based, hybrid
- Best results with genetic algorithm but with long computing time

Conclusion: Robust solution for free-form surfaces measurements with CMM
LITERATURE REVIEW – Laser scanner

• Laser scanner best positions (based on CAD data)
• Best results with: 170 to 240 mm distance
 -35 to 35 ° angle (α)
 -15 to 35 ° angle (β)
• Collisions avoidance (voxel model)
• Strategy improved accuracy of measurement

Conclusion: Optimal positioning increases the accuracy
Viewpoints projection strategy

This presentation was created as a part of the project: "Complex System for Attracting, Education and Continuing Involvement of Talented Individuals to Research Centers of AS CR and FME BUT ", reg. no. CZ.1.07/2.3.00/09.0228
LITERATURE REVIEW – Laser scanner

• Manual measurement with poor positions → lower accuracy
• Voxel model – viewpoint set & scanning path generation

Conclusion: Voxel model vs. NURBS surfaces in other publications
LITERATURE REVIEW – Structured light scanner

- Complet inspection system with 6 DOF robot
- CAD-based possition computation
- Surface Nomal and Visibility Map methods
- Sphere strategy, Patch sliding strategy
- Time savings 25 – 45 %

Conclusion: Presented strategies and methods useful for own utilization

This presentation was created as a part of the project: "Complex System for Attracting, Education and Continuing Involvement of Talented Individuals to Research Centers of AS CR and FME BUT ", reg. no. CZ.1.07/2.3.00/09.0228
LITERATURE REVIEW – Structured light scanner

- Extension to previous work
- 5 strategies – GD&T, Trims and cutouts, Large multifaces surfaces, Global coverage, Specific target points
- Iterative view planning
- Registration – RPM or ICP method
- Suitable for complex parts (e.g. car door)

Conclusion: Methodology of view planning process; strategies for inspection tasks
CRITICAL ANALYSIS

• **CMM** – registration and sampling problems using different algorithms
 – continuous improvements in free-form surfaces measurements

• **Laser scanner** – registration problems (ICP or assisted)
 – optimal viewpoints problems
 – viewpoints projection strategy & voxel model

• **Structured light scanner** – optimal viewpoints algorithms based on different inspection tasks
 – virtual simulation of measurement
 – methodology of view planning process
GOALS OF RESEARCH AND METHODOLOGY

• Algorithms for optimal viewpoint placement for two cameras structured light scanners considering models for illumination and reflection

Methodology

1. Viewpoints placement calculation – recursive, genetic or neural algorithms
2. Illumination and reflection model – ray tracing, ray casting, Z-buffer methods
3. Robot positions accessibility – reverse kinematics
4. Verification on various objects
CURRENT STAGE OF PROJECT

Theoretical part:
- Literature review
- Formulation of objectives
- Known algorithms selection

Practical part:
- Robot positioning skills
- Parameters and algorithms for optimal positions
- Employment of reflection model
- Robot position accessibility
- Verification measurements

Final part:
- Formulation of conclusion
- Publishing the dissertation

This presentation was created as a part of the project: "Complex System for Attracting, Education and Continuing Involvement of Talented Individuals to Research Centers of AS CR and FME BUT ", reg. no. CZ.1.07/2.3.00/09.0228
BIBLIOGRAPHY

This presentation was created as a part of the project: "Complex System for Attracting, Education and Continuing Involvement of Talented Individuals to Research Centers of AS CR and FME BUT ", reg. no. CZ.1.07/2.3.00/09.0228
Thank you for your attention

This presentation was created as a part of the project: "Complex System for Attracting, Education and Continuing Involment of Talented Individuals to Research Centers of AS CR and FME BUT ", reg. no. CZ.1.07/2.3.00/09.0228