Optimalization of control algorithm of MR damper

Zbyněk Strecker

Theory is when one knows everything but nothing works. Practice is when everything works but nobody knows why. In our lab, theory and practice go hand in hand: nothing works and nobody knows why.

Institute of Machine and Industrial Design
Faculty of Mechanical Engineering
BUT

10.10.2012
Optimalization of control algorithm of MR damper

Table of Contents

- Introduction
- MR damper
- Control algorithms
- Time response measuring stand
- Results
- Conclusions
Optimalization of control algorithm of MR damper

MR damper

- slit
- cylinder
- floating piston
- coil winding
- MR fluid

Graph showing force (F) versus current (I) with various currents indicated:
- 0A (deminimization)
- 0.05A
- 0.25A
- 0.5A
- 0.75A
- 1A
- 1.5A
- 2A

10.10.2012
Control Algorithms

\[v_1 v_{12} \geq 0 \quad F_{sa} = c_{sky} v_1 \]
\[v_1 v_{12} < 0 \quad F_{sa} = 0 \]
Current state of art

- A comprehensive analysis of the response time of MR dampers (Apr 2006) Jeong-Hoi Koo, Fernando D Goncalves, Mehdi Ahmadian,

- Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications (October 2003) Guangqiang Yang, Billie F. Spencer, Jr, Hyung-Jo Jung, and J. David Carlson

\[
\begin{align*}
i &= \frac{1}{L} \int u(t) \, dt, \\
u(t) &= i \cdot R_L \implies i &= \frac{U}{R_L}(1 - e^{-\frac{R_i t}{L}})
\end{align*}
\]
Optimalization of control algorithm of MR damper

AIMS
- To measure time response dependances
- To find sources of the long time response
- To design optimized controller
- To use and compare suspension quality with advanced control algorithms
Optimalization of control algorithm of MR damper

Measuring stand

![Diagram of measuring stand with circuit and force and voltage vs. time graph]
Optimalization of control algorithm of MR damper

Results – time response of the coil’s current

\[i = \frac{1}{L} \int u(t) \, dt, \quad u(t) = i \cdot R_L \Rightarrow i = \frac{U}{R_L} \left(1 - e^{-\frac{R_L t}{L}} \right) \]
Optimalization of control algorithm of MR damper

Results – time response of the coil’s current

- The response time of the controller + damper with oil with smaller ratio of Fe particles to base oil is shorter

- PWM mode significantly reduces time response

[Graphs showing time constants for different fluids and current values]
Optimalization of control algorithm of MR damper

Results – time response of force

- The higher the current is, the faster response

Possible diagnostics of cavitations

Voltage and current during cavitation

10.10.2012
Optimalization of control algorithm of MR damper

Results – time response of force

- PWM controller significantly reduces overall time response of the MR damper
- The time response of the MR damper is much longer than time response of MR fluid

MR damper force time response

![Graph showing time response of MR damper force](chart.png)

- MR 140 - voltage controller
- MR140 - PWM controller
- OL-J3 Voltage controller
- OL-J3 PWM controller

<table>
<thead>
<tr>
<th>Current [A]</th>
<th>Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>
Optimalization of control algorithm of MR damper

Plans for future

- Finding of the cause of the long time response
 - Measurement of the magnetization of the coil's core
- The possibility of using current overdrive
- Design of the controller with recuperation (improving efficiency)
- Measurements of the suspension quality of the advanced control algorithms with voltage and PWM controller